Regularity estimates for singular parabolic measure data problems with sharp growth

نویسندگان

چکیده

We prove global gradient estimates for parabolic p-Laplace type equations with measure data, whose model isut−div(|Du|p−2Du)=μinΩ×(0,T)⊂Rn×R,where μ is a signed Radon finite total mass. consider the singular case2nn+1<p≤2−1n+1and give possibly minimal conditions on nonlinearity and boundary of Ω, which guarantee regularity results such data problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Hardy-poincaré Inequalities and Sharp Carleman Estimates for Degenerate/singular Parabolic Problems

We consider the following class of degenerate/singular parabolic operators: Pu = ut − (xux)x − λ xβ u, x ∈ (0, 1), associated to homogeneous boundary conditions of Dirichlet and/or Neumann type. Under optimal conditions on the parameters α ≥ 0, β, λ ∈ R, we derive sharp global Carleman estimates. As an application, we deduce observability and null controllability results for the corresponding e...

متن کامل

Sharp estimates for finite element approximations to elliptic problems with Neumann boundary data of low regularity

Consider a second order homogeneous elliptic problem with smooth coefficients, Au = 0, on a smooth domain, Ω, but with Neumann boundary data of low regularity. Interior maximum norm error estimates are given for C0 finite element approximations to this problem. When the Neumann data is not in L1(∂Ω), these local estimates are not of optimal order but are nevertheless shown to be sharp. A method...

متن کامل

Attractors for non-autonomous parabolic problems with singular initial data

Article history: Received 7 May 2010 Revised 3 May 2011 Available online 17 May 2011

متن کامل

Local W -regularity Estimates for Weak Solutions of Parabolic Equations with Singular Divergence-free Drifts

We study weighted Sobolev regularity of weak solutions of nonhomogeneous parabolic equations with singular divergence-free drifts. Assuming that the drifts satisfy some mild regularity conditions, we establish local weighted Lp-estimates for the gradients of weak solutions. Our results improve the classical one to the borderline case by replacing the L∞-assumption on solutions by solutions in t...

متن کامل

Hölder-estimates for non-autonomous parabolic problems with rough data

In this paper we establish Hölder estimates for solutions to non-autonomous parabolic equations on non-smooth domains which are complemented with mixed boundary conditions. The corresponding elliptic operators are of divergence type, the coefficient matrix of which depends only measurably on time. These results are in the tradition of the classical book of Ladyshenskaya et al. [39], which also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2022.01.037